Linear Weighted Mobile Media Example


Linearmente Weighted Moving DEFINIZIONE media linearmente Weighted Moving Average Un tipo di media mobile che assegna un peso maggiore ai dati sui prezzi recenti di quanto non faccia la semplice media mobile comuni. Questa media viene calcolata prendendo ciascuno dei prezzi di chiusura in un dato periodo di tempo e la loro riproduzione dalla sua determinata posizione nella serie di dati. Una volta che la posizione dei periodi di tempo sono stati contabilizzati vengono sommati e divisi per la somma del numero di periodi di tempo. SMONTAGGIO linearmente Weighted Average Moving Ad esempio, in una 15 giorni di media mobile linearmente ponderata, oggi prezzo di chiusura è moltiplicato per 15, ieri del 14, e così via fino a raggiungere gamma giorno 1 nei periodi. Questi risultati vengono poi sommati e divisi per la somma dei moltiplicatori (15 14 13. 3 2 1 120). La media mobile linearmente ponderata è stata una delle prime risposte a porre una maggiore importanza ai dati recenti. La popolarità di questa media mobile è stata diminuita dalla media mobile esponenziale. ma nondimeno risulta essere ancora molto useful. Time Series Metodi Tempo metodi serie sono tecniche statistiche che fanno uso di dati storici accumulati in un periodo di tempo. metodi di serie storiche per scontato che ciò che è accaduto in passato, continueranno a verificarsi in futuro. Come suggerisce il nome della serie di tempo, questi metodi si riferiscono alla previsione di un solo fattore - il tempo. Essi comprendono la media mobile, livellamento esponenziale, e la linea di tendenza lineare e sono tra i metodi più diffusi per la previsione a corto raggio tra le società di servizi e di produzione. Questi metodi presuppongono che i modelli storici identificabili o tendenze della domanda nel corso del tempo si ripetono. Moving previsione media un tempo di serie può essere semplice come utilizzando domanda nel periodo in corso a prevedere la domanda nel prossimo periodo. Questo è talvolta chiamato una previsione ingenuo o intuitivo. 4 Per esempio, se la domanda è di 100 unità di questa settimana, la previsione per settimane la prossima domanda è di 100 unità se la domanda risulta essere invece 90 unità, quindi la seguente domanda settimane è di 90 unità, e così via. Questo tipo di metodo di previsione non tiene in considerazione il comportamento storico domanda si basa solo su richiesta nel periodo corrente. Esso reagisce direttamente ai normali movimenti casuali della domanda. Il metodo semplice media mobile utilizza diversi valori medi durante il recente passato per sviluppare una previsione. Ciò tende a smorzare o appianare, gli aumenti e diminuzioni casuali di una previsione che utilizza un solo periodo. La media mobile semplice è utile per la previsione della domanda che è stabile e non mostra alcun comportamento domanda pronunciata, come ad esempio una tendenza o andamento stagionale. Le medie mobili vengono calcolati per determinati periodi, come ad esempio tre mesi o cinque mesi, a seconda di quanto il previsore desideri per lisciare i dati relativi alla domanda. Più lungo è il periodo di media mobile, più uniforme sarà. La formula per il calcolo della media mobile semplice è calcolare una media mobile semplice La carta istantanea clip Office Supply Company vende e distribuisce forniture per ufficio per aziende, scuole e agenzie entro un raggio di 50 miglia del suo magazzino. L'azienda di forniture per ufficio è competitivo, e la capacità di consegnare gli ordini prontamente è un fattore di ottenere nuovi clienti e mantenere quelli vecchi. (Uffici in genere non ordine quando corrono a corto di rifornimenti, ma quando sono completamente esauriti. Di conseguenza, hanno bisogno immediatamente i loro ordini.) Il manager della società vuole essere determinati driver abbastanza e veicoli sono a disposizione per consegnare gli ordini prontamente e sono dotati di adeguate scorte in magazzino. Pertanto, il manager vuole essere in grado di prevedere il numero di ordini che si verificheranno nel corso del mese successivo (cioè a prevedere la domanda di fornitura). Da record di ordini di consegna, gestione ha accumulato i seguenti dati per gli ultimi 10 mesi, da cui si vuole calcolare a 3 e 5 mesi medie mobili. Supponiamo che è la fine di ottobre. La previsione derivante sia dal 3- o la media mobile 5 mesi è tipicamente per il mese successivo nella sequenza, che in questo caso è novembre. La media mobile è calcolata dalla domanda di ordini per la prima 3 mesi in sequenza secondo la seguente formula: La media mobile 5 mesi viene calcolato dai precedenti 5 mesi di dati domanda come segue: Il 3 e 5 mesi spostando previsioni medie per tutti i mesi di dati domanda sono riportati nella tabella seguente. In realtà, solo le previsioni per novembre in base alla più recente domanda mensile sarebbe stato utilizzato dal gestore. Tuttavia, le previsioni precedenti per mesi precedenti ci permettono di confrontare le previsioni con la domanda effettiva per vedere come precisa il metodo di previsione è - che è, quanto bene lo fa. Tre e cinque mesi Medie Entrambi spostando le previsioni medie nella tabella precedente tendono ad appianare la variabilità che si verificano nei dati effettivi. Questo effetto lisciatura può essere osservato nella figura seguente in cui le medie di 3 mesi e 5 mesi sono state sovrapposte su un grafico dei dati originali: La media mobile 5 mesi nella figura precedente appiana fluttuazioni in misura maggiore la media mobile a 3 mesi. Tuttavia, la media a 3 mesi riflette più da vicino i dati più recenti disponibili al gestore di forniture per ufficio. In generale, le previsioni che utilizzano il più lungo periodo di media mobile sono più lenti a reagire ai recenti cambiamenti della domanda rispetto a quella che quelle fatte usando più breve periodo medie mobili. I periodi supplementari di dati smorzare la velocità con cui la previsione risponde. Stabilire il numero appropriato di periodi da utilizzare in una previsione media mobile spesso richiede una certa quantità di sperimentazione per tentativi ed errori. Lo svantaggio del metodo della media mobile è che non reagisce alle variazioni che si verificano per un motivo, come cicli e effetti stagionali. I fattori che causano i cambiamenti sono generalmente ignorati. Si tratta essenzialmente di un metodo meccanico, che riflette i dati storici in modo coerente. Tuttavia, il metodo della media mobile ha il vantaggio di essere facile da usare, veloce e relativamente economico. In generale, questo metodo può fornire una buona meteo per il breve periodo, ma non dovrebbe essere spinta troppo lontano nel futuro. Ponderata media mobile Il metodo della media mobile può essere regolata a più riflettere da vicino le fluttuazioni nei dati. Nella ponderata metodo della media mobile, i pesi sono assegnati ai dati più recenti, secondo la seguente formula: I dati domanda di PM Servizi computer (mostrato nella tabella per l'Esempio 10.3) sembra seguire un andamento lineare crescente. L'azienda vuole calcolare una linea di tendenza lineare per vedere se è più preciso del livellamento esponenziale e le previsioni di livellamento esponenziale corretti sviluppati negli esempi 10.3 e 10.4. I valori necessari per i meno calcoli quadrati sono i seguenti: L'utilizzo di questi valori, i parametri per la linea di tendenza lineare sono calcolati come segue: Pertanto, l'equazione linea di tendenza lineare è quello di calcolare una previsione per il periodo 13, siano x 13 nel lineari linea di tendenza: il grafico seguente mostra la linea di tendenza lineare rispetto ai dati effettivi. La linea di tendenza sembra riflettere molto attentamente i dati effettivi - che è, di essere una buona misura - e sarebbe quindi un buon modello di previsione per questo problema. Tuttavia, uno svantaggio della linea di tendenza lineare è che non adattarsi ad un cambiamento di tendenza, come i metodi di lisciatura previsione esponenziali sarà cioè, si presume che tutte le previsioni future seguire una linea retta. Questo limita l'uso di questo metodo per un breve lasso di tempo in cui si può essere relativamente certi che la tendenza non cambierà. Le rettifiche di stagione un andamento stagionale è un aumento ripetitivo e diminuzione della domanda. Molti poste a vista mostrano un comportamento stagionale. le vendite di abbigliamento seguono modelli annuali di stagione, con la domanda di vestiti caldi aumentare in autunno e in inverno e in calo in primavera e in estate, come la richiesta di più freddi aumenta di abbigliamento. La domanda di molti articoli al dettaglio, compresi i giocattoli, attrezzature sportive, abbigliamento, apparecchi elettronici, prosciutti, tacchini, vino e frutta, aumento durante la stagione estiva. Augurali domanda carta aumenta in concomitanza con giornate speciali come San Valentino e la Festa della Mamma. i modelli stagionali possono verificarsi anche su base mensile, settimanale o addirittura giornaliera. Alcuni ristoranti hanno una maggiore domanda di sera che a pranzo o durante il fine settimana in contrasto con i giorni feriali. Traffic - quindi le vendite - a centri commerciali raccoglie il Venerdì e Sabato. Ci sono diversi metodi per riflettere i modelli stagionali in una previsione di serie temporali. Descriveremo uno dei metodi più semplici che utilizzano un fattore stagionale. Un fattore stagionale è un valore numerico che viene moltiplicato per il tempo normale per ottenere una previsione destagionalizzato. Un metodo per sviluppare una domanda di fattori stagionali è di dividere la domanda di ciascun periodo stagionale dalla domanda annua totale, secondo la seguente formula: I fattori stagionali derivano tra 0 e 1.0 sono, in effetti, la porzione di domanda annuale totale assegnati ogni stagione. Questi fattori stagionali vengono moltiplicati per la domanda annua prevista per produrre previsioni adattate per ogni stagione. Calcolo di una previsione con aggiustamenti stagionali Wishbone Farms cresce tacchini di vendere ad una società di lavorazione della carne durante tutto l'anno. Tuttavia, la sua stagione è ovviamente nel corso del quarto trimestre dell'anno, da ottobre a dicembre. Wishbone Farms ha sperimentato la domanda per i tacchini per gli ultimi tre anni indicati nella tabella seguente: Perché abbiamo tre anni di dati relativi alla domanda, siamo in grado di calcolare i fattori stagionali dividendo domanda trimestrale complessivo per i tre anni dalla domanda totale in tutti i tre anni : Avanti, vogliamo moltiplicare la domanda prevista per il prossimo anno, 2000, da ciascuno dei fattori stagionali per ottenere la domanda prevista per ogni trimestre. Per fare questo, abbiamo bisogno di una domanda prevista per il 2000. In questo caso, dal momento che i dati relativi alla domanda della tabella sembrano mostrare una tendenza generalmente in aumento, si calcola una linea di tendenza lineare per i tre anni di dati nella tabella per ottenere un ruvido stima del tempo: Così, la previsione per il 2000 è 58.17, o di 58.170 tacchini. Utilizzando questa previsione annuale della domanda, le previsioni destagionalizzati, SF io, per il 2000 stanno confrontando queste previsioni trimestrali con i valori medi attuali nella tabella, che sembrerebbe essere relativamente buone stime di previsione, che riflette sia le variazioni stagionali dei dati e la tendenza al rialzo generale. 10-12. Come è il metodo della media mobile simile a esponenziale 10-13. Che effetto sul modello di livellamento esponenziale aumentando il costante livellamento hanno 10-14. Come funziona regolato livellamento esponenziale diverso dal esponenziale 10-15. Che cosa determina la scelta della costante di smoothing per trend in rettificato esponenziale modello di livellamento 10-16. Negli esempi del capitolo per i metodi di serie temporali, la previsione di partenza è sempre stato ipotizzato essere la stessa come domanda effettiva nel primo periodo. Suggerire altri modi che la previsione di partenza potrebbe essere derivato nell'uso reale. 10-17. Come funziona il modello di previsione linea di tendenza lineare differisce da un modello di regressione lineare per la previsione 10-18. Del tempo modelli della serie presentate in questo capitolo, tra cui la media mobile media ponderata e in movimento, livellamento esponenziale e regolato livellamento esponenziale, e la linea di tendenza lineare, che si consideri la migliore Perché 10-19. Quali sono i vantaggi regolata livellamento esponenziale avere su una linea di tendenza lineare per domanda prevista che presenta un trend 4 K. B. Kahn e J. T. Mentzer, Previsione di consumo e industriale, The Journal of Business Forecasting 14, n. 2 (estate 1995): 21-28.Weighted medie mobili: Le basi Nel corso degli anni, i tecnici hanno trovato due problemi con la media mobile semplice. Il primo problema è il lasso di tempo della media mobile (MA). La maggior parte degli analisti tecnici ritengono che l'azione dei prezzi. l'apertura o la chiusura del prezzo delle azioni, non è sufficiente su cui dipendere per prevedere correttamente i segnali di acquisto o vendita delle azioni di crossover MAs. Per risolvere questo problema, gli analisti ora assegnare più peso ai dati relativi ai prezzi più recenti utilizzando la media mobile esponenziale livellata (EMA). (Per saperne di più nell'esplorazione esponenziale Pesato media mobile.) Un esempio per esempio, utilizzando un 10-giorni MA, un analista avrebbe preso il prezzo del 10 ° giorno di chiusura e moltiplicare questo numero per 10, il nono giorno per le nove, l'ottavo giorno per otto e così via alla prima della MA. Una volta che il totale è stato determinato, l'analista poi dividere il numero per l'aggiunta dei moltiplicatori. Se si aggiungono i moltiplicatori del 10-day MA esempio, il numero è 55. Questo indicatore è conosciuta come la media mobile linearmente ponderata. (Per la lettura correlata, controllare semplici medie mobili Fai Trends distinguersi.) Molti tecnici sono convinti sostenitori del esponenzialmente lisciato media mobile (EMA). Questo indicatore è stato spiegato in tanti modi diversi che confonde gli studenti e degli investitori. Forse la migliore spiegazione viene da John J. Murphys: Analisi tecnica dei mercati finanziari, (pubblicato dal New York Institute of Finance, 1999): Il modo esponenziale lisciato movimento indirizzi medi sia dei problemi connessi con la media mobile semplice. Innanzitutto, la media esponenziale livellata assegna un peso maggiore ai dati più recenti. Pertanto, è una media mobile ponderata. Ma mentre assegna minore importanza ai dati dei prezzi passati, esso include nel suo calcolo tutti i dati nella vita dello strumento. Inoltre, l'utente può regolare il coefficiente di dare maggiore o minore peso al più recente prezzo giorni, che viene aggiunta ad una percentuale del valore giorni precedente. La somma dei due valori percentuali aggiunge fino a 100. Per esempio, l'ultimo giorni prezzo potrebbe essere assegnato un peso di 10 (.10), che viene aggiunto al giorno precedente peso di 90 (.90). Questo dà l'ultimo giorno 10 del peso totale. Questo sarebbe l'equivalente di una media di 20 giorni, dando l'ultimo giorni prezzo un valore inferiore di 5 (.05). Figura 1: esponenziale Smoothed media mobile È possibile che questo grafico mostra il Nasdaq Composite Index dalla prima settimana di agosto 2000 al 1 ° giugno 2001. Come si può vedere chiaramente, l'EMA, che in questo caso utilizza i dati relativi ai prezzi di chiusura nel corso di un periodo di nove giorni, ha segnali di vendita precisi sul 8 settembre (contrassegnato da un nero freccia verso il basso). Questo era il giorno in cui l'indice rotto sotto il livello 4.000. La seconda freccia nera indica un'altra tappa verso il basso che i tecnici sono stati effettivamente aspettavano. Il Nasdaq non ha potuto generare abbastanza volume e interesse da parte degli investitori al dettaglio per rompere il marchio 3.000. E poi tuffò di nuovo a toccare il fondo a 1619,58 su aprile 4. La fase di rialzo del 12 aprile è contrassegnato da una freccia. Qui l'indice ha chiuso a 1,961.46, e tecnici ha cominciato a vedere i gestori di fondi istituzionali che iniziano a prendere alcuni affari come Cisco, Microsoft e alcuni dei problemi legati all'energia. (Leggi i nostri articoli correlati: Moving Buste media:. Raffinazione uno strumento popolare Trading and Moving Average rimbalzo) Una misura del rapporto tra un cambiamento nella quantità domandata di un bene particolare e una variazione del suo prezzo. Prezzo. Il valore di mercato totale in dollari di tutto ad un company039s azioni in circolazione. La capitalizzazione di mercato è calcolato moltiplicando. Frexit abbreviazione di quotFrench exitquot è uno spin-off francese del termine Brexit, che è emerso quando il Regno Unito ha votato per. Un ordine con un broker che unisce le caratteristiche di ordine di stop con quelli di un ordine limite. Un ordine di stop-limite sarà. Un round di finanziamento in cui gli investitori acquistano magazzino da una società ad una valutazione inferiore rispetto alla stima collocato sul. Una teoria economica della spesa totale per l'economia e dei suoi effetti sulla produzione e l'inflazione. economia keynesiana è stato sviluppato.

Comments

Popular Posts