Mad Per La Tre Periodo Weighted Mobile Media Tempo


Moving Average Introduzione Previsione. Come si può immaginare che stiamo guardando alcuni degli approcci più primitive di previsione. Ma si spera che questi sono almeno un'introduzione utile per alcuni dei problemi informatici relativi all'attuazione previsioni nei fogli di calcolo. In questo filone si continuerà avviando all'inizio e iniziare a lavorare con Moving previsioni medie. Spostamento previsioni medie. Tutti conoscono lo spostamento previsioni medie indipendentemente dal fatto che credono di essere. Tutti gli studenti universitari fanno loro tutto il tempo. Pensa ai tuoi punteggi dei test in un corso dove si sta andando ad avere quattro prove durante il semestre. Consente di assumere hai un 85 sul vostro primo test. Che cosa prevedere per il secondo punteggio test Cosa pensi che la tua insegnante di prevedere per il prossimo punteggio test Cosa pensi che i tuoi amici potrebbero prevedere per il prossimo punteggio test Cosa pensi che i tuoi genitori potrebbero prevedere per il prossimo punteggio del test Indipendentemente tutto il blabbing si potrebbe fare ai tuoi amici e genitori, e il vostro insegnante è molto probabile che si aspettano di ottenere qualcosa nella zona del 85 che avete appena ottenuto. Bene, ora lascia supporre che, nonostante la vostra auto-promozione per i tuoi amici, ti sopravvalutare se stessi e capire che si può studiare meno per la seconda prova e così si ottiene un 73. Ora, che sono tutti di interessati e indifferente andare a anticipare avrete sulla vostra terza prova ci sono due approcci molto probabili per loro di sviluppare una stima indipendentemente dal fatto che condivideranno con voi. Essi possono dire a se stessi, quotThis ragazzo è sempre soffia il fumo delle sue intelligenza. Hes andando ad ottenere un altro 73 se hes fortuna. Forse i genitori cercano di essere più solidali e dire, quotWell, finora youve acquistasti un 85 e un 73, quindi forse si dovrebbe capire su come ottenere circa una (85 73) 2 79. Non so, forse se l'avete fatto meno festa e werent scodinzolante la donnola tutto il luogo e se hai iniziato a fare molto di più lo studio si potrebbe ottenere una maggiore score. quot Entrambe queste stime sono in realtà in movimento le previsioni medie. Il primo sta usando solo il tuo punteggio più recente di prevedere le prestazioni future. Questo si chiama una previsione media mobile utilizzando uno periodo di dati. Il secondo è anche una previsione media mobile ma utilizzando due periodi di dati. Lascia supporre che tutte queste persone busting sulla vostra grande mente hanno sorta di voi incazzato e si decide di fare bene sulla terza prova per le proprie ragioni e di mettere un punteggio più alto di fronte al vostro quotalliesquot. Si prende il test e il punteggio è in realtà un 89 Tutti, compreso te stesso, è impressionato. Così ora avete la prova finale del semestre in arrivo e come al solito si sente il bisogno di pungolare tutti a fare le loro previsioni su come youll fare l'ultimo test. Beh, speriamo che si vede il motivo. Ora, si spera si può vedere il modello. Quale credi sia la più accurata Whistle mentre lavoriamo. Ora torniamo alla nostra nuova impresa di pulizie ha iniziato dal sorellastra estraniato chiamato Whistle mentre lavoriamo. Hai alcuni dati di vendita del passato rappresentata dalla sezione seguente da un foglio di calcolo. Per prima cosa presentiamo i dati per un periodo di tre movimento previsione media. La voce per cella C6 dovrebbe essere Ora è possibile copiare questa formula cella verso le altre cellule C7-C11. Si noti come le mosse medi durante il più recente dei dati storici, ma utilizza esattamente i tre periodi più recenti disponibili per ogni previsione. Si dovrebbe anche notare che noi non veramente bisogno di fare le previsioni per i periodi precedenti al fine di sviluppare la nostra più recente previsione. Questo è sicuramente diverso dal modello di livellamento esponenziale. Ive ha incluso il predictionsquot quotpast perché li useremo nella pagina web successiva per misurare la previsione di validità. Ora voglio presentare i risultati analoghi per un periodo di movimento previsione media di due. La voce per cella C5 dovrebbe essere Ora è possibile copiare questa formula cella verso le altre cellule C6-C11. Notate come ora solo i due più recenti pezzi di dati storici sono utilizzati per ogni previsione. Ancora una volta ho incluso il predictionsquot quotpast a scopo illustrativo e per un uso successivo nella convalida del tempo. Alcune altre cose che sono importanti per notare. Per un periodo di m-movimento previsione media solo il m valori dei dati più recenti sono usati per fare la previsione. Nient'altro è necessario. Per un periodo di m-movimento previsione media, quando si effettua predictionsquot quotpast, si noti che la prima previsione si verifica nel periodo m 1. Entrambi questi aspetti sarà molto significativo quando sviluppiamo il nostro codice. Sviluppare la Moving Average funzione. Ora abbiamo bisogno di sviluppare il codice per la previsione media mobile che può essere utilizzato in modo più flessibile. Il codice segue. Si noti che gli ingressi sono per il numero di periodi che si desidera utilizzare nella previsione e la matrice dei valori storici. È possibile memorizzare in qualsiasi cartella di lavoro che si desidera. Media mobile Funzione (storici, NumberOfPeriods) As Single Dichiarazione e inizializzazione delle variabili ARTICOLO Dim come variante Dim contatore come Integer Dim accumulo As Single Dim HistoricalSize come numero intero inizializzazione delle variabili contatore 1 Accumulo 0 Determinazione della dimensione della matrice storica HistoricalSize Historical. Count per il contatore 1 Per NumberOfPeriods accumulare il numero appropriato di più recenti valori precedentemente osservati accumulo accumulazione storica (HistoricalSize - NumberOfPeriods Counter) media mobile accumulo NumberOfPeriods il codice verrà spiegato in classe. Si desidera posizionare la funzione sul foglio in modo che il risultato del calcolo appare dove dovrebbe come il following.3 Capire livelli previsti e metodi che è possibile generare sia di dettaglio (singolo elemento) le previsioni e di sintesi (linea di prodotto) le previsioni che riflettono prodotto modelli di domanda. Il sistema analizza passato vendite per calcolare le previsioni utilizzando 12 metodi di previsione. Le previsioni includono informazioni dettagliate a livello di articolo e più alto livello di informazioni su una filiale o la società nel suo complesso. 3.1 Previsione Criteri di valutazione delle prestazioni In base alla selezione di opzioni di elaborazione e sulle tendenze e modelli nei dati di vendita, alcuni metodi di previsione prestazioni migliori di altri per una determinata serie di dati storici. Un metodo di previsione che è appropriato per un prodotto potrebbe non essere appropriato per un altro prodotto. Si potrebbe scoprire che un metodo di previsione che fornisce buoni risultati in una fase del ciclo di vita del prodotto rimane appropriata durante l'intero ciclo di vita. È possibile scegliere tra due metodi per valutare le prestazioni attuali dei metodi di previsione: Percentuale di accuratezza (POA). Media deviazione assoluta (MAD). Entrambi questi metodi di valutazione delle prestazioni richiedono dati di vendita storici per un periodo specificato. Questo periodo è chiamato un periodo holdout o un periodo di best fit. I dati di questo periodo è utilizzato come base per raccomandare quale metodo di previsione per la fabbricazione di proiezione previsioni successivo. Questa raccomandazione è specifico per ciascun prodotto e può cambiare da una generazione previsioni a quella successiva. 3.1.1 Best Fit Il sistema suggerisce la migliore previsione fit applicando i metodi di previsione selezionati in passato cronologia degli ordini di vendita e confrontando la simulazione del tempo alla storia reale. Quando si genera una migliore previsione in forma, il sistema confronta effettive storie ordini di vendita per le previsioni per un periodo di tempo specifico e calcola quanto accuratamente ogni metodo di previsione diverso previsto vendite. Quindi il sistema raccomanda la previsione più accurata come la soluzione migliore. Questo grafico illustra migliori previsioni fit: Figura 3-1 Scelta migliore prevedere il sistema utilizza questa sequenza di passaggi per determinare la soluzione migliore: utilizzare ogni metodo indicato per simulare una previsione per il periodo di dati di controllo. Confronta le vendite reali alle previsioni simulate per il periodo di dati di controllo. Calcolare il POA o il MAD per determinare quale metodo di previsione più si avvicina ultimi vendite effettive. Il sistema utilizza sia POA o MAD, in base alle opzioni di elaborazione selezionate. Consiglia best fit previsioni dal POA che è più vicino al 100 per cento (sopra o sotto) o il MAD che è più vicino a zero. 3.2 Metodi di previsione JD Edwards EnterpriseOne Previsioni Management utilizza 12 metodi per la previsione quantitativa e indica quale metodo fornisce la soluzione migliore per la situazione di previsione. Questa sezione discute: Metodo 1: cento rispetto allo scorso anno. Metodo 2: Percentuale calcolata rispetto allo scorso anno. Metodo 3: l'anno scorso a questo anno. Metodo 4: media mobile. Metodo 5: Lineare approssimazione. Metodo 6: regressioni al minimo quadrato. Metodo 7: secondo grado approssimazione. Metodo 8: metodo flessibile. Metodo 9: ponderata media mobile. Metodo 10: Linear Smoothing. Metodo 11: esponenziale. Metodo 12: livellamento esponenziale con Trend e la stagionalità. Specificare il metodo che si desidera utilizzare nelle opzioni di elaborazione per il programma di previsione Generation (R34650). La maggior parte di questi metodi forniscono un controllo limitato. Ad esempio, il peso posto sulla recente dati storici o l'intervallo di date di dati storici che viene utilizzato nei calcoli può essere specificato dall'utente. Gli esempi nella guida indicano la procedura di calcolo per ciascuno dei metodi di previsione disponibili, in un insieme identico di dati storici. Gli esempi di metodo nella parte all'uso guida o tutti questi insiemi di dati, che è dati storici degli ultimi due anni. La proiezione del tempo va in prossimo anno. Questi dati la storia delle vendite è stabile con piccoli aumenti stagionali di luglio e dicembre. Questo modello è caratteristica di un prodotto maturo che potrebbe essere avvicinando obsolescenza. 3.2.1 Metodo 1: cento rispetto allo scorso anno Questo metodo utilizza il cento rispetto allo scorso anno formula per moltiplicare ciascun periodo di previsione per la percentuale di aumento o diminuzione specificato. Per prevedere la domanda, questo metodo richiede il numero di periodi per la migliore vestibilità più un anno di storia delle vendite. Questo metodo è utile per prevedere la domanda per gli elementi stagionali con la crescita o il declino. 3.2.1.1 Esempio: Metodo 1: cento rispetto allo scorso anno, il cento rispetto allo scorso anno formula moltiplica i dati di vendita rispetto all'anno precedente di un fattore si specifica e quindi i progetti che si traducono nel corso del prossimo anno. Questo metodo potrebbe essere utile nel budget per simulare l'effetto di un tasso di crescita specificata o quando la storia di vendita ha una significativa componente stagionale. specifiche di previsione: fattore di moltiplicazione. Ad esempio, specificare 110 in opzione di elaborazione per aumentare i anni le vendite dati storici precedenti del 10 per cento. Richiesto storia delle vendite: un anno per il calcolo della previsione, più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit) che si specifica. Questa tabella è storia utilizzato nel calcolo del tempo: febbraio previsione è pari a 117 volte 1.1 128,7 arrotondato al 129. marzo previsione è uguale a 115 volte 1.1 126,5 arrotondata a 127. 3.2.2 Metodo 2: Percentuale calcolata rispetto allo scorso anno Questo metodo utilizza la percentuale calcolato su Ultimo formula anno per confrontare gli ultimi vendite dei periodi specificati per le vendite dagli stessi periodi dell'anno precedente. Il sistema determina un aumento o diminuzione percentuale, e quindi moltiplica ogni periodo per la percentuale per determinare la previsione. Per prevedere la domanda, questo metodo richiede il numero di periodi della storia di ordine di vendita più un anno di storia delle vendite. Questo metodo è utile per prevedere la domanda a breve termine per gli elementi stagionali con la crescita o il declino. 3.2.2.1 Esempio: Metodo 2: Percentuale calcolata rispetto allo scorso anno la percentuale calcolata rispetto allo scorso anno formula moltiplica i dati di vendita rispetto all'anno precedente di un fattore che viene calcolato dal sistema, e poi si proietta quel risultato per il prossimo anno. Questo metodo può essere utile nel progettare l'effetto di estendere il tasso di crescita recente di un prodotto nel prossimo preservando un andamento stagionale che è presente nella storia vendite. specifiche Previsione: Gamma di storia delle vendite da utilizzare nel calcolo del tasso di crescita. Ad esempio, specificare n è uguale a 4 nella opzione di elaborazione per confrontare la storia delle vendite per gli ultimi quattro periodi a quelle stesse quattro periodi dell'anno precedente. Utilizzare il rapporto calcolato per rendere la proiezione per il prossimo anno. Richiesto storia delle vendite: un anno per il calcolo della previsione più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzata nel calcolo del tempo, n 4 data: febbraio previsione è pari a 117 volte 0,9766 114.26 arrotondato al 114. marzo previsione è pari 115 volte 0,9766 112.31 arrotondato al 112. 3.2.3 Metodo 3: l'anno scorso a questo anno Questo metodo utilizza ultimi anni le vendite per i prossimi anni previsione. Per prevedere la domanda, questo metodo richiede il numero di periodi di meglio si adattano più un anno della storia degli ordini di vendita. Questo metodo è utile per prevedere la domanda per i prodotti maturi con la domanda di livello o di domanda stagionale, senza una tendenza. 3.2.3.1 Esempio: Metodo 3: l'anno scorso a questo anno l'ultimo anno a questa formula Anno copia i dati delle vendite rispetto all'anno precedente per l'anno successivo. Questo metodo potrebbe essere utile nel budget per simulare le vendite al livello attuale. Il prodotto è maturo e non ha alcuna tendenza nel lungo periodo, ma un significativo modello di domanda stagionale potrebbe esistere. specifiche Previsione: Nessuno. Richiesto storia delle vendite: un anno per il calcolo della previsione più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: January Previsioni uguale a gennaio dello scorso anno con un valore di previsione di 128. febbraio previsione è pari a febbraio dello scorso anno con un valore di previsione di 117. marzo previsione è pari a marzo dello scorso anno con un valore di previsione di 115. 3.2.4 metodo 4: media mobile Questo metodo utilizza la formula media Trasferirsi in media il numero specificato di periodi di proiettare il periodo successivo. Si dovrebbe ricalcolare spesso (mensile, o almeno ogni tre mesi) per riflettere la modifica livello di domanda. Per prevedere la domanda, questo metodo richiede il numero di periodi di meglio si adattano più il numero di periodi della storia degli ordini di vendita. Questo metodo è utile per prevedere la domanda di prodotti maturi senza tendenza. 3.2.4.1 Esempio: Metodo 4: media mobile media mobile (MA) è un metodo popolare per la media dei risultati della recente storia delle vendite per determinare una proiezione per il breve termine. Il metodo di previsione MA ritardo rispetto tendenze. Previsioni pregiudizi e gli errori sistematici si verificano quando la storia di vendita del prodotto presenta forte tendenza o modelli stagionali. Questo metodo funziona meglio per le previsioni a breve gamma di prodotti maturi che per i prodotti che sono in fase di crescita o di obsolescenza del ciclo di vita. specifiche Previsione: n è uguale al numero di periodi della storia delle vendite da utilizzare nel calcolo del tempo. Ad esempio, specificare n 4 nella opzione di elaborazione di utilizzare i più recenti quattro periodi come base per la proiezione nel prossimo periodo di tempo. Un grande valore di n (ad esempio 12) richiede più storia di vendita. Essa si traduce in una previsione stabile, ma è lento a riconoscere cambiamenti nel livello di vendite. Viceversa, un valore piccolo per n (ad esempio 3) è più veloce di rispondere a cambiamenti nel livello di vendite, ma le previsioni fluttui così ampiamente che la produzione non può rispondere alle variazioni. Richiesto storia delle vendite: n più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: febbraio previsione è pari a (114 119 137 125) 4 123.75 arrotondato al 124. marzo previsione è pari a (119 137 125 124) 4 126.25 arrotondato a 126. 3.2.5 Metodo 5: Lineare Approssimazione Questo metodo utilizza la formula lineare approssimazione per calcolare un trend dal numero di periodi della storia degli ordini di vendita e di proiettare questa tendenza alla previsione. Si dovrebbe ricalcolare l'andamento mensile per rilevare i cambiamenti nelle tendenze. Questo metodo richiede il numero di periodi di meglio si adattano più il numero di periodi della storia degli ordini di vendita specificate. Questo metodo è utile per prevedere la domanda di nuovi prodotti, o prodotti con trend positivi o negativi consistenti che non sono a causa di fluttuazioni stagionali. 3.2.5.1 Esempio: Metodo 5: lineare approssimazione lineare Approssimazione calcola una tendenza che si basa su due punti di vendita i dati della cronologia. Questi due punti definiscono una linea di tendenza retta che si proietta nel futuro. Utilizzare questo metodo con cautela perché le previsioni a lungo raggio vengono sfruttate da piccole variazioni in soli due punti dati. specifiche Previsione: n è uguale al punto di dati nella storia delle vendite che viene confrontato con il più recente punto dati per identificare una tendenza. Ad esempio, specificare n 4 di utilizzare la differenza tra il dicembre (dati più recenti) e agosto (quattro periodi prima del dicembre) come base per il calcolo del trend. Minimo richiesto storia delle vendite: n più 1 più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: January previsioni di dicembre di un anno 1 (Trend), che è pari a 137 (1 volta 2) 139. febbraio previsioni di dicembre di un anno 1 (Trend), che è pari a 137 (2 volte 2) 141. marzo previsioni di dicembre di un anno 1 (Trend), che equivale a 137 (3 volte 2) 143. 3.2.6 metodo 6: minimi quadrati Regressione minimi quadrati di regressione (LSR) metodo deriva una equazione che descrive una relazione linea retta tra i dati storici di vendita e il passaggio del tempo. LSR inserisce una linea per la gamma selezionata di dati in modo che la somma dei quadrati delle differenze tra i punti dati vendite effettive e la linea di regressione sono ridotti al minimo. La previsione è una proiezione di questa linea retta verso il futuro. Questo metodo richiede storia dati di vendita per il periodo che è rappresentato dal numero di periodi best fit più il numero specificato di periodi di dati storici. Il requisito minimo è di due punti di dati storici. Questo metodo è utile per prevedere la domanda quando una tendenza lineare è nei dati. 3.2.6.1 Esempio: Metodo 6: minimi quadrati di regressione lineare, o Least Squares Regression (LSR), è il metodo più popolare per l'identificazione di un trend lineare nei dati storici di vendita. Il metodo calcola i valori di A e B per essere utilizzato nella formula: Questa equazione descrive una linea retta, in cui Y rappresenta vendite e X rappresenta il tempo. La regressione lineare è lento a riconoscere i punti di svolta e gli spostamenti di funzioni passo della domanda. La regressione lineare inserisce una linea retta ai dati, anche quando i dati sono stagionali o meglio descritto da una curva. Quando i dati vendite di storia segue una curva o ha un forte andamento stagionale, previsto pregiudizi e si verificano errori sistematici. specifiche Previsione: n uguale i periodi della storia delle vendite che verranno utilizzati nel calcolo dei valori per a e b. Ad esempio, specificare n 4 di utilizzare la storia da settembre a dicembre come base per i calcoli. Quando i dati sono disponibili, sarebbe normalmente utilizzato un n grande (ad esempio n 24). LSR definisce una linea per due soli punti di dati. Per questo esempio, un valore piccolo per n (n = 4) è stato scelto per ridurre i calcoli manuali necessarie per verificare i risultati. Minimo richiesto storia delle vendite: n periodi più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: marzo previsione è pari a 119,5 (7 volte 2,3) 135,6 arrotondato a 136. 3.2.7 Metodo 7: secondo grado Approssimazione Per proiettare le previsioni, questo metodo utilizza la formula secondo grado di approssimazione per tracciare una curva che si basa sul numero di periodi di storia delle vendite. Questo metodo richiede il numero di periodi di meglio si adattano più il numero di periodi della storia degli ordini di vendita tre volte. Questo metodo non è utile per prevedere la domanda per un periodo a lungo termine. 3.2.7.1 Esempio: Metodo 7: secondo grado approssimazione lineare di regressione determina i valori di A e B nella formula previsioni Y a b X con l'obiettivo di una linea retta ai dati storici di vendita. Secondo grado ravvicinamento è simile, ma questo metodo determina valori di a, b, c nella formula questa previsione: Y a b X c X 2 L'obiettivo di questo metodo è quello di adattare una curva ai dati storici vendite. Questo metodo è utile quando un prodotto è nel passaggio tra le fasi del ciclo di vita. Ad esempio, quando un nuovo prodotto si sposta da introduzione a stadi di crescita, l'andamento delle vendite potrebbe accelerare. A causa del secondo termine di ordine, la previsione può avvicinarsi rapidamente infinito o scendere a zero (a seconda che il coefficiente c è positivo o negativo). Questo metodo è utile solo nel breve periodo. specifiche di previsione: la formula trovano a, b, c per adattarsi una curva a esattamente tre punti. Si specifica n, il numero di periodi di tempo di dati di accumulare in ognuno dei tre punti. In questo esempio, n 3. dati di vendita effettivi per aprile a giugno è combinata nel primo punto, Q1. Luglio a settembre vengono aggiunti insieme per creare Q2 e ottobre a dicembre somma da Q3. La curva è montato tre valori Q1, Q2, Q3 e. Richiesto storia delle vendite: 3 volte n periodi per il calcolo della previsione più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: Q0 (Jan) (febbraio) (Mar) Q1 (Apr) (Maggio) (giugno) che è uguale a 125 122 137 384 Q2 (luglio) (agosto) (settembre) che è uguale a 140 129 131 400 Q3 (ott) (Nov) (Dec) che è uguale a 114 119 137 370 la fase successiva prevede il calcolo dei tre coefficienti a, b, e c per essere utilizzata nella previsione formula Y ab X c X 2. Q1, Q2, Q3 e sono presentati sul grafico, in cui il tempo è tracciata sull'asse orizzontale. Q1 rappresenta vendite storiche totali per aprile, maggio e giugno ed è tracciata a X 1 Q2 corrisponde a luglio a settembre Q3 corrisponde ad ottobre a dicembre e Q4 rappresenta gennaio a marzo. Questo grafico illustra il tracciato di Q1, Q2, Q3, Q4 e per la seconda approssimazione grado: Figura 3-2 Rappresentazione grafica Q1, Q2, Q3, Q4 e per seconda approssimazione grado tre equazioni descrivono i tre punti sul grafico: (1) Q1 un bX cX 2 dove X 1 (Q1 abc) (2) Q2 un bX cX 2 dove X 2 (Q2 un 2b 4c) (3) Q3 un bX cX 2 dove X 3 (Q3 un 3b 9c) Risolvere le tre equazioni simultaneamente per trovare b, a, e c: Sottrai equazione 1 (1) la formula 2 (2) e risolvere per B: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c sostituto questa equazione per b nell'equazione (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c un Q3 ndash 3 (2T ndash Q1) Infine, sostituire queste equazioni di a e B nell'equazione (1): (1) Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1 c (Q3 ndash Q2) (Q1 ndash Q2) 2 Il metodo secondo grado Approssimazione calcola a, b, ec come segue: a Q3 ndash 3 (2T ndash Q1 ) 370 ndash 3 (400 ndash 384) 370 ndash 3 (16) 322 b (ndash Q1) ndash3c Q2 (400 ndash 384) ndash (3 volte ndash23) 16 69 85 C (Q3 ndash Q2) (Q1 ndash Q2) 2 ( 370 ndash 400) (384 ndash 400) 2 ndash23 si tratta di un calcolo di previsione secondo grado di approssimazione: Y a bX cX 2 322 85X (ndash23) (X 2) Quando X 4, Q4 322 340 ndash 368 294. La previsione è uguale a 294 3 98 per periodo. Quando X 5, Q5 322 425 ndash 575 172. La previsione è pari a 172 3 58.33 arrotondato a 57 per periodo. Quando X 6, Q6 322 510 ndash 828 4. La previsione è pari a 4 3 1,33 arrotondato a 1 per periodo. Questa è la previsione per il prossimo anno, l'anno scorso a questo anno: 3.2.8 Metodo 8: metodo flessibile Questo metodo consente di selezionare il miglior numero impeto di periodi della storia degli ordini di vendita che inizia n mesi prima della data di inizio del tempo, e per applicare un aumento o diminuzione percentuale fattore di moltiplicazione con cui modificare la previsione. Questo metodo è simile al metodo 1, cento rispetto allo scorso anno, tranne che è possibile specificare il numero di periodi che si utilizza come base. A seconda di cosa si seleziona come n, questo metodo richiede periodi di meglio si adattano più il numero di periodi di dati di vendita che è indicato. Questo metodo è utile per prevedere la domanda per una tendenza pianificata. 3.2.8.1 Esempio: Metodo 8: metodo flessibile Il metodo flessibile (per cento rispetto al n mesi prima) è simile al metodo 1, cento rispetto allo scorso anno. Entrambi i metodi si moltiplicano i dati di vendita provenienti da un periodo di tempo precedente di un fattore specificato da te, e quindi progetti che risultano nel futuro. Nella cento rispetto allo scorso anno il metodo, la proiezione si basa sui dati dello stesso periodo dell'esercizio precedente. È inoltre possibile utilizzare il metodo flessibile per specificare un periodo di tempo, altro rispetto allo stesso periodo l'anno scorso, da utilizzare come base per i calcoli. Fattore di moltiplicazione. Ad esempio, specificare 110 in opzione di elaborazione per aumentare le vendite precedenti dati storici del 10 per cento. periodo di base. Ad esempio, n 4 fa sì che la prima previsione ad essere basata su dati di vendita nel mese di settembre dello scorso anno. Minimo richiesto storia delle vendite: il numero di periodi di nuovo al periodo di base più il numero di periodi di tempo che è necessario per la valutazione delle prestazioni del tempo (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: 3.2.9 Metodo 9: Weighted Moving Average La Moving formula ponderata media è simile al metodo 4, Moving Average formula, perché la media è la storia mesi precedenti le vendite che proietta la successiva storia mesi le vendite. Tuttavia, con questa formula è possibile assegnare i pesi per ciascuno dei periodi precedenti. Questo metodo richiede il numero di periodi ponderati selezionati più il numero di periodi di dati migliore vestibilità. Simile a media mobile, questo metodo è in ritardo rispetto tendenze della domanda, quindi questo metodo non è raccomandato per i prodotti con le tendenze forti o stagionalità. Questo metodo è utile per prevedere la domanda per i prodotti maturi con la domanda che è relativamente livello. 3.2.9.1 Esempio: Metodo 9: ponderata media mobile Il metodo ponderata media mobile (WMA) è simile al metodo 4, media mobile (MA). Tuttavia, è possibile assegnare i pesi diseguali ai dati storici quando si utilizza WMA. Il metodo calcola una media ponderata di storia recente vendite per arrivare ad una proiezione per il breve termine. Dati più recenti è di solito un fattore di ponderazione maggiore di dati più vecchi, in modo da WMA è più sensibile alle variazioni del livello delle vendite. Tuttavia, pregiudizi meteorologiche e errori sistematici si verificano quando la storia di vendita del prodotto presenta le tendenze forti o modelli stagionali. Questo metodo funziona meglio per le previsioni a breve gamma di prodotti maturi che per i prodotti nelle fasi di crescita o di obsolescenza del ciclo di vita. Il numero di periodi della storia delle vendite (n) da utilizzare nel calcolo del tempo. Ad esempio, specificare n 4 nella opzione di elaborazione di utilizzare i più recenti quattro periodi come base per la proiezione nel prossimo periodo di tempo. Un grande valore di n (ad esempio 12) richiede più storia di vendita. Tali risultati un valore in una previsione stabile, ma è lento a riconoscere cambiamenti nel livello di vendite. Viceversa, un valore piccolo per n (ad esempio 3) risponde più rapidamente ai cambiamenti nel livello di vendite, ma le previsioni fluttui così ampiamente che la produzione non può rispondere alle variazioni. Il numero totale di periodi per l'opzione di elaborazione rdquo14 - periodi includerdquo non deve superare i 12 mesi. Il peso che viene assegnato a ciascuno dei periodi di dati storici. I pesi assegnati dovranno totale 1.00. Ad esempio, quando n 4, assegnare un peso di 0,50, 0,25, 0,15, 0,10 e con i dati più recenti che ricevono il maggior peso. Minimo richiesto storia delle vendite: n più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: January previsione è pari a (131 volte) 0,10 (114 volte) 0.15 (119 volte) 0.25 (137 volte) 0.50 (0.10 0.15 0.25 0.50) 128.45 arrotondata a 128. Febbraio previsione pari (114 volte 0.10) (119 volte) 0.15 (137 volte) 0.25 (128 volte) 0.50 1 127,5 arrotondata a 128. marzo previsione è pari a (119 volte) 0,10 (137 volte) 0.15 (128 volte) 0.25 (128 volte) 0.50 1 128.45 arrotondato a 128. 3.2.10 metodo 10: Linear Smoothing Questo metodo calcola una media ponderata dei dati di vendita del passato. Nel calcolo, questo metodo utilizza il numero di periodi della storia degli ordini di vendita (da 1 a 12) che è indicato nella opzione di elaborazione. Il sistema utilizza una progressione matematica pesare i dati nell'intervallo dal primo (almeno peso) al finale (più peso). Quindi il sistema proietta queste informazioni per ciascun periodo di previsione. Questo metodo richiede i mesi migliori Fit Plus la storia ordine di vendita per il numero di periodi che sono specificati in opzione di elaborazione. 3.2.10.1 Esempio: Metodo 10: Linear Smoothing Questo metodo è simile al metodo 9, WMA. Tuttavia, invece di assegnare arbitrariamente pesi ai dati storici, una formula viene utilizzata per assegnare i pesi che declinano in modo lineare e sommare a 1.00. Il metodo calcola una media ponderata di recente storia delle vendite per arrivare ad una proiezione per il breve termine. Come tutte le tecniche di previsione in movimento media lineari, pregiudizi meteorologiche e errori sistematici si verificano quando la storia di vendita del prodotto presenta forte tendenza o modelli stagionali. Questo metodo funziona meglio per le previsioni a breve gamma di prodotti maturi che per i prodotti nelle fasi di crescita o di obsolescenza del ciclo di vita. n è uguale al numero di periodi della storia delle vendite da utilizzare nel calcolo del tempo. Ad esempio, specificare n è uguale a 4 nell'opzione di elaborazione di utilizzare i più recenti quattro periodi come base per la proiezione nel prossimo periodo di tempo. Il sistema assegna automaticamente i pesi ai dati storici che il declino lineare e somma da 1,00. Per esempio, quando n è uguale a 4, il sistema assegna pesi di 0,4, 0,3, 0,2, e 0,1, con i dati più recenti che ricevono il maggior peso. Minimo richiesto storia delle vendite: n più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: 3.2.11 Metodo 11: livellamento esponenziale Questo metodo calcola una media levigato, che diventa una stima che rappresenta il livello generale delle vendite nel corso dei periodi di dati storici selezionati. Questo metodo richiede storia dei dati di vendita per il periodo di tempo che è rappresentato dal numero di periodi più appropriate più il numero di periodi di dati storici specificati. Il requisito minimo è di due periodi di dati storici. Questo metodo è utile per prevedere la domanda quando nessuna tendenza lineare è nei dati. 3.2.11.1 Esempio: Metodo 11: livellamento esponenziale Questo metodo è simile al metodo 10, Linear Smoothing. In Linear Smoothing, il sistema assegna pesi che declinano in modo lineare ai dati storici. In esponenziale, il sistema assegna pesi che in modo esponenziale decadimento. L'equazione per la previsione esponenziale è: alpha Previsione (precedenti vendite effettive) (1 ndashalpha) (precedente previsione) La previsione è una media ponderata delle vendite effettive rispetto al periodo precedente e le previsioni rispetto al periodo precedente. Alpha is the weight that is applied to the actual sales for the previous period. (1 ndash alpha) is the weight that is applied to the forecast for the previous period. Values for alpha range from 0 to 1 and usually fall between 0.1 and 0.4. The sum of the weights is 1.00 (alpha (1 ndash alpha) 1). You should assign a value for the smoothing constant, alpha. If you do not assign a value for the smoothing constant, the system calculates an assumed value that is based on the number of periods of sales history that is specified in the processing option. alpha equals the smoothing constant that is used to calculate the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. n equals the range of sales history data to include in the calculations. Generally, one year of sales history data is sufficient to estimate the general level of sales. For this example, a small value for n (n 4) was chosen to reduce the manual calculations that are required to verify the results. Exponential Smoothing can generate a forecast that is based on as little as one historical data point. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.12 Method 12: Exponential Smoothing with Trend and Seasonality This method calculates a trend, a seasonal index, and an exponentially smoothed average from the sales order history. The system then applies a projection of the trend to the forecast and adjusts for the seasonal index. This method requires the number of periods best fit plus two years of sales data, and is useful for items that have both trend and seasonality in the forecast. You can enter the alpha and beta factor, or have the system calculate them. Alpha and beta factors are the smoothing constant that the system uses to calculate the smoothed average for the general level or magnitude of sales (alpha) and the trend component of the forecast (beta). 3.2.12.1 Example: Method 12: Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing, in that a smoothed average is calculated. However, Method 12 also includes a term in the forecasting equation to calculate a smoothed trend. The forecast is composed of a smoothed average that is adjusted for a linear trend. When specified in the processing option, the forecast is also adjusted for seasonality. Alpha equals the smoothing constant that is used in calculating the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. Beta equals the smoothing constant that is used in calculating the smoothed average for the trend component of the forecast. Values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast. Alpha and beta are independent of one another. They do not have to sum to 1.0. Minimum required sales history: One year plus the number of time periods that are required to evaluate the forecast performance (periods of best fit). When two or more years of historical data is available, the system uses two years of data in the calculations. Method 12 uses two Exponential Smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal index. An exponentially smoothed average: An exponentially smoothed trend: A simple average seasonal index: Figure 3-3 Simple Average Seasonal Index The forecast is then calculated by using the results of the three equations: L is the length of seasonality (L equals 12 months or 52 weeks). t is the current time period. m is the number of time periods into the future of the forecast. S is the multiplicative seasonal adjustment factor that is indexed to the appropriate time period. This table lists history used in the forecast calculation: This section provides an overview of Forecast Evaluations and discusses: You can select forecasting methods to generate as many as 12 forecasts for each product. Each forecasting method might create a slightly different projection. When thousands of products are forecast, a subjective decision is impractical regarding which forecast to use in the plans for each product. The system automatically evaluates performance for each forecasting method that you select and for each product that you forecast. You can select between two performance criteria: MAD and POA. MAD is a measure of forecast error. POA is a measure of forecast bias. Both of these performance evaluation techniques require actual sales history data for a period specified by you. The period of recent history used for evaluation is called a holdout period or period of best fit. To measure the performance of a forecasting method, the system: Uses the forecast formulas to simulate a forecast for the historical holdout period. Makes a comparison between the actual sales data and the simulated forecast for the holdout period. When you select multiple forecast methods, this same process occurs for each method. Multiple forecasts are calculated for the holdout period and compared to the known sales history for that same period. The forecasting method that produces the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in the plans. This recommendation is specific to each product and might change each time that you generate a forecast. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way. Moving average and exponential smoothing models As a first step in moving beyond mean models, random walk models, and linear trend models, nonseasonal patterns and trends can be extrapolated using a moving-average or smoothing model. The basic assumption behind averaging and smoothing models is that the time series is locally stationary with a slowly varying mean. Hence, we take a moving (local) average to estimate the current value of the mean and then use that as the forecast for the near future. This can be considered as a compromise between the mean model and the random-walk-without-drift-model. The same strategy can be used to estimate and extrapolate a local trend. A moving average is often called a quotsmoothedquot version of the original series because short-term averaging has the effect of smoothing out the bumps in the original series. By adjusting the degree of smoothing (the width of the moving average), we can hope to strike some kind of optimal balance between the performance of the mean and random walk models. The simplest kind of averaging model is the. Simple (equally-weighted) Moving Average: The forecast for the value of Y at time t1 that is made at time t equals the simple average of the most recent m observations: (Here and elsewhere I will use the symbol 8220Y-hat8221 to stand for a forecast of the time series Y made at the earliest possible prior date by a given model.) This average is centered at period t-(m1)2, which implies that the estimate of the local mean will tend to lag behind the true value of the local mean by about (m1)2 periods. Thus, we say the average age of the data in the simple moving average is (m1)2 relative to the period for which the forecast is computed: this is the amount of time by which forecasts will tend to lag behind turning points in the data. For example, if you are averaging the last 5 values, the forecasts will be about 3 periods late in responding to turning points. Note that if m1, the simple moving average (SMA) model is equivalent to the random walk model (without growth). If m is very large (comparable to the length of the estimation period), the SMA model is equivalent to the mean model. As with any parameter of a forecasting model, it is customary to adjust the value of k in order to obtain the best quotfitquot to the data, i. e. the smallest forecast errors on average. Here is an example of a series which appears to exhibit random fluctuations around a slowly-varying mean. First, lets try to fit it with a random walk model, which is equivalent to a simple moving average of 1 term: The random walk model responds very quickly to changes in the series, but in so doing it picks much of the quotnoisequot in the data (the random fluctuations) as well as the quotsignalquot (the local mean). If we instead try a simple moving average of 5 terms, we get a smoother-looking set of forecasts: The 5-term simple moving average yields significantly smaller errors than the random walk model in this case. The average age of the data in this forecast is 3 ((51)2), so that it tends to lag behind turning points by about three periods. (For example, a downturn seems to have occurred at period 21, but the forecasts do not turn around until several periods later.) Notice that the long-term forecasts from the SMA model are a horizontal straight line, just as in the random walk model. Thus, the SMA model assumes that there is no trend in the data. However, whereas the forecasts from the random walk model are simply equal to the last observed value, the forecasts from the SMA model are equal to a weighted average of recent values . The confidence limits computed by Statgraphics for the long-term forecasts of the simple moving average do not get wider as the forecasting horizon increases. This is obviously not correct Unfortunately, there is no underlying statistical theory that tells us how the confidence intervals ought to widen for this model. However, it is not too hard to calculate empirical estimates of the confidence limits for the longer-horizon forecasts. For example, you could set up a spreadsheet in which the SMA model would be used to forecast 2 steps ahead, 3 steps ahead, etc. within the historical data sample. You could then compute the sample standard deviations of the errors at each forecast horizon, and then construct confidence intervals for longer-term forecasts by adding and subtracting multiples of the appropriate standard deviation. If we try a 9-term simple moving average, we get even smoother forecasts and more of a lagging effect: The average age is now 5 periods ((91)2). If we take a 19-term moving average, the average age increases to 10: Notice that, indeed, the forecasts are now lagging behind turning points by about 10 periods. Which amount of smoothing is best for this series Here is a table that compares their error statistics, also including a 3-term average: Model C, the 5-term moving average, yields the lowest value of RMSE by a small margin over the 3-term and 9-term averages, and their other stats are nearly identical. So, among models with very similar error statistics, we can choose whether we would prefer a little more responsiveness or a little more smoothness in the forecasts. (Return to top of page.) Browns Simple Exponential Smoothing (exponentially weighted moving average) The simple moving average model described above has the undesirable property that it treats the last k observations equally and completely ignores all preceding observations. Intuitively, past data should be discounted in a more gradual fashion--for example, the most recent observation should get a little more weight than 2nd most recent, and the 2nd most recent should get a little more weight than the 3rd most recent, and so on. The simple exponential smoothing (SES) model accomplishes this. Let 945 denote a quotsmoothing constantquot (a number between 0 and 1). One way to write the model is to define a series L that represents the current level (i. e. local mean value) of the series as estimated from data up to the present. The value of L at time t is computed recursively from its own previous value like this: Thus, the current smoothed value is an interpolation between the previous smoothed value and the current observation, where 945 controls the closeness of the interpolated value to the most recent observation. The forecast for the next period is simply the current smoothed value: Equivalently, we can express the next forecast directly in terms of previous forecasts and previous observations, in any of the following equivalent versions. In the first version, the forecast is an interpolation between previous forecast and previous observation: In the second version, the next forecast is obtained by adjusting the previous forecast in the direction of the previous error by a fractional amount 945. is the error made at time t. In the third version, the forecast is an exponentially weighted (i. e. discounted) moving average with discount factor 1- 945: The interpolation version of the forecasting formula is the simplest to use if you are implementing the model on a spreadsheet: it fits in a single cell and contains cell references pointing to the previous forecast, the previous observation, and the cell where the value of 945 is stored. Note that if 945 1, the SES model is equivalent to a random walk model (without growth). If 945 0, the SES model is equivalent to the mean model, assuming that the first smoothed value is set equal to the mean. (Return to top of page.) The average age of the data in the simple-exponential-smoothing forecast is 1 945 relative to the period for which the forecast is computed. (This is not supposed to be obvious, but it can easily be shown by evaluating an infinite series.) Hence, the simple moving average forecast tends to lag behind turning points by about 1 945 periods. For example, when 945 0.5 the lag is 2 periods when 945 0.2 the lag is 5 periods when 945 0.1 the lag is 10 periods, and so on. For a given average age (i. e. amount of lag), the simple exponential smoothing (SES) forecast is somewhat superior to the simple moving average (SMA) forecast because it places relatively more weight on the most recent observation --i. e. it is slightly more quotresponsivequot to changes occuring in the recent past. For example, an SMA model with 9 terms and an SES model with 945 0.2 both have an average age of 5 for the data in their forecasts, but the SES model puts more weight on the last 3 values than does the SMA model and at the same time it doesn8217t entirely 8220forget8221 about values more than 9 periods old, as shown in this chart: Another important advantage of the SES model over the SMA model is that the SES model uses a smoothing parameter which is continuously variable, so it can easily optimized by using a quotsolverquot algorithm to minimize the mean squared error. The optimal value of 945 in the SES model for this series turns out to be 0.2961, as shown here: The average age of the data in this forecast is 10.2961 3.4 periods, which is similar to that of a 6-term simple moving average. The long-term forecasts from the SES model are a horizontal straight line . as in the SMA model and the random walk model without growth. However, note that the confidence intervals computed by Statgraphics now diverge in a reasonable-looking fashion, and that they are substantially narrower than the confidence intervals for the random walk model. The SES model assumes that the series is somewhat quotmore predictablequot than does the random walk model. An SES model is actually a special case of an ARIMA model. so the statistical theory of ARIMA models provides a sound basis for calculating confidence intervals for the SES model. In particular, an SES model is an ARIMA model with one nonseasonal difference, an MA(1) term, and no constant term . otherwise known as an quotARIMA(0,1,1) model without constantquot. The MA(1) coefficient in the ARIMA model corresponds to the quantity 1- 945 in the SES model. For example, if you fit an ARIMA(0,1,1) model without constant to the series analyzed here, the estimated MA(1) coefficient turns out to be 0.7029, which is almost exactly one minus 0.2961. It is possible to add the assumption of a non-zero constant linear trend to an SES model. To do this, just specify an ARIMA model with one nonseasonal difference and an MA(1) term with a constant, i. e. an ARIMA(0,1,1) model with constant. The long-term forecasts will then have a trend which is equal to the average trend observed over the entire estimation period. You cannot do this in conjunction with seasonal adjustment, because the seasonal adjustment options are disabled when the model type is set to ARIMA. However, you can add a constant long-term exponential trend to a simple exponential smoothing model (with or without seasonal adjustment) by using the inflation adjustment option in the Forecasting procedure. The appropriate quotinflationquot (percentage growth) rate per period can be estimated as the slope coefficient in a linear trend model fitted to the data in conjunction with a natural logarithm transformation, or it can be based on other, independent information concerning long-term growth prospects. (Return to top of page.) Browns Linear (i. e. double) Exponential Smoothing The SMA models and SES models assume that there is no trend of any kind in the data (which is usually OK or at least not-too-bad for 1-step-ahead forecasts when the data is relatively noisy), and they can be modified to incorporate a constant linear trend as shown above. What about short-term trends If a series displays a varying rate of growth or a cyclical pattern that stands out clearly against the noise, and if there is a need to forecast more than 1 period ahead, then estimation of a local trend might also be an issue. The simple exponential smoothing model can be generalized to obtain a linear exponential smoothing (LES) model that computes local estimates of both level and trend. The simplest time-varying trend model is Browns linear exponential smoothing model, which uses two different smoothed series that are centered at different points in time. The forecasting formula is based on an extrapolation of a line through the two centers. (A more sophisticated version of this model, Holt8217s, is discussed below.) The algebraic form of Brown8217s linear exponential smoothing model, like that of the simple exponential smoothing model, can be expressed in a number of different but equivalent forms. The quotstandardquot form of this model is usually expressed as follows: Let S denote the singly-smoothed series obtained by applying simple exponential smoothing to series Y. That is, the value of S at period t is given by: (Recall that, under simple exponential smoothing, this would be the forecast for Y at period t1.) Then let Squot denote the doubly-smoothed series obtained by applying simple exponential smoothing (using the same 945 ) to series S: Finally, the forecast for Y tk . for any kgt1, is given by: This yields e 1 0 (i. e. cheat a bit, and let the first forecast equal the actual first observation), and e 2 Y 2 8211 Y 1 . after which forecasts are generated using the equation above. This yields the same fitted values as the formula based on S and S if the latter were started up using S 1 S 1 Y 1 . This version of the model is used on the next page that illustrates a combination of exponential smoothing with seasonal adjustment. Holt8217s Linear Exponential Smoothing Brown8217s LES model computes local estimates of level and trend by smoothing the recent data, but the fact that it does so with a single smoothing parameter places a constraint on the data patterns that it is able to fit: the level and trend are not allowed to vary at independent rates. Holt8217s LES model addresses this issue by including two smoothing constants, one for the level and one for the trend. At any time t, as in Brown8217s model, the there is an estimate L t of the local level and an estimate T t of the local trend. Here they are computed recursively from the value of Y observed at time t and the previous estimates of the level and trend by two equations that apply exponential smoothing to them separately. If the estimated level and trend at time t-1 are L t82091 and T t-1 . respectively, then the forecast for Y tshy that would have been made at time t-1 is equal to L t-1 T t-1 . When the actual value is observed, the updated estimate of the level is computed recursively by interpolating between Y tshy and its forecast, L t-1 T t-1, using weights of 945 and 1- 945. The change in the estimated level, namely L t 8209 L t82091 . can be interpreted as a noisy measurement of the trend at time t. The updated estimate of the trend is then computed recursively by interpolating between L t 8209 L t82091 and the previous estimate of the trend, T t-1 . using weights of 946 and 1-946: The interpretation of the trend-smoothing constant 946 is analogous to that of the level-smoothing constant 945. Models with small values of 946 assume that the trend changes only very slowly over time, while models with larger 946 assume that it is changing more rapidly. A model with a large 946 believes that the distant future is very uncertain, because errors in trend-estimation become quite important when forecasting more than one period ahead. (Return to top of page.) The smoothing constants 945 and 946 can be estimated in the usual way by minimizing the mean squared error of the 1-step-ahead forecasts. When this done in Statgraphics, the estimates turn out to be 945 0.3048 and 946 0.008 . The very small value of 946 means that the model assumes very little change in the trend from one period to the next, so basically this model is trying to estimate a long-term trend. By analogy with the notion of the average age of the data that is used in estimating the local level of the series, the average age of the data that is used in estimating the local trend is proportional to 1 946, although not exactly equal to it. In this case that turns out to be 10.006 125. This isn8217t a very precise number inasmuch as the accuracy of the estimate of 946 isn8217t really 3 decimal places, but it is of the same general order of magnitude as the sample size of 100, so this model is averaging over quite a lot of history in estimating the trend. The forecast plot below shows that the LES model estimates a slightly larger local trend at the end of the series than the constant trend estimated in the SEStrend model. Also, the estimated value of 945 is almost identical to the one obtained by fitting the SES model with or without trend, so this is almost the same model. Now, do these look like reasonable forecasts for a model that is supposed to be estimating a local trend If you 8220eyeball8221 this plot, it looks as though the local trend has turned downward at the end of the series What has happened The parameters of this model have been estimated by minimizing the squared error of 1-step-ahead forecasts, not longer-term forecasts, in which case the trend doesn8217t make a lot of difference. If all you are looking at are 1-step-ahead errors, you are not seeing the bigger picture of trends over (say) 10 or 20 periods. In order to get this model more in tune with our eyeball extrapolation of the data, we can manually adjust the trend-smoothing constant so that it uses a shorter baseline for trend estimation. For example, if we choose to set 946 0.1, then the average age of the data used in estimating the local trend is 10 periods, which means that we are averaging the trend over that last 20 periods or so. Here8217s what the forecast plot looks like if we set 946 0.1 while keeping 945 0.3. This looks intuitively reasonable for this series, although it is probably dangerous to extrapolate this trend any more than 10 periods in the future. What about the error stats Here is a model comparison for the two models shown above as well as three SES models. The optimal value of 945.for the SES model is approximately 0.3, but similar results (with slightly more or less responsiveness, respectively) are obtained with 0.5 and 0.2. (A) Holts linear exp. smoothing with alpha 0.3048 and beta 0.008 (B) Holts linear exp. smoothing with alpha 0.3 and beta 0.1 (C) Simple exponential smoothing with alpha 0.5 (D) Simple exponential smoothing with alpha 0.3 (E) Simple exponential smoothing with alpha 0.2 Their stats are nearly identical, so we really can8217t make the choice on the basis of 1-step-ahead forecast errors within the data sample. We have to fall back on other considerations. If we strongly believe that it makes sense to base the current trend estimate on what has happened over the last 20 periods or so, we can make a case for the LES model with 945 0.3 and 946 0.1. If we want to be agnostic about whether there is a local trend, then one of the SES models might be easier to explain and would also give more middle-of-the-road forecasts for the next 5 or 10 periods. (Return to top of page.) Which type of trend-extrapolation is best: horizontal or linear Empirical evidence suggests that, if the data have already been adjusted (if necessary) for inflation, then it may be imprudent to extrapolate short-term linear trends very far into the future. Trends evident today may slacken in the future due to varied causes such as product obsolescence, increased competition, and cyclical downturns or upturns in an industry. For this reason, simple exponential smoothing often performs better out-of-sample than might otherwise be expected, despite its quotnaivequot horizontal trend extrapolation. Damped trend modifications of the linear exponential smoothing model are also often used in practice to introduce a note of conservatism into its trend projections. The damped-trend LES model can be implemented as a special case of an ARIMA model, in particular, an ARIMA(1,1,2) model. It is possible to calculate confidence intervals around long-term forecasts produced by exponential smoothing models, by considering them as special cases of ARIMA models. (Beware: not all software calculates confidence intervals for these models correctly.) The width of the confidence intervals depends on (i) the RMS error of the model, (ii) the type of smoothing (simple or linear) (iii) the value(s) of the smoothing constant(s) and (iv) the number of periods ahead you are forecasting. In general, the intervals spread out faster as 945 gets larger in the SES model and they spread out much faster when linear rather than simple smoothing is used. This topic is discussed further in the ARIMA models section of the notes. (Return to top of page.)

Comments

Popular Posts